

Upper Hunter Mining Dialogue

Air Quality Monitoring Data Analysis Project

16 November 2020 Project No.: 0526661

Document details				
Document title	Upper Hunter Mining Dialogue			
Document subtitle	Air Quality Monitoring Data Analysis Project			
Project No.	0526661			
Date	16 November 2020			
Version	1.0			
Author	James Grieve			
Client Name	NSW Minerals Council			

Document history

Varaian	Povision	Author	Deviewed by	ERM approval to issue		Commonto
version	Revision	Aution	Reviewed by	Name	Date	Comments
Draft	D1	James Grieve	Damon Roddis	Damon Roddis	14.02.2020	Draft Report for NSWMC Review
Revised Draft	D2	James Grieve	Damon Roddis	Damon Roddis	19.02.2020	Updated Draft Report for NSWMC Review
Final	R1	James Grieve	Damon Roddis	Damon Roddis	14.05.2020	Final
Revised Draft Final	R2	James Grieve	Damon Roddis	Damon Roddis	18.09.2020	Incorporating CSIRO Review
Final	R3	James Grieve	Damon Roddis	Damon Roddis	16.11.2020	Final

Signature Page

16 November 2020

Upper Hunter Mining Dialogue

Air Quality Monitoring Data Analysis Project

James Grieve Senior Consultant

of la

Damon Roddis Partner

ERM Australia Pacific P/L Level 15, 309 Kent Street Sydney NSW 2000

© Copyright 2020 by ERM Worldwide Group Ltd and/or its affiliates ("ERM"). All rights reserved. No part of this work may be reproduced or transmitted in any form, or by any means, without the prior written permission of ERM.

CONTENTS

EXEC	UTIVE	SUMMAF	۲۶۲	1
1.	INTRO	DUCTION	۹	3
2.	PARTIC	CULATE	MATTER OVERVIEW	4
3.	UPPER		R AIR QUALITY MONITORING NETWORK (UHAQMN)	6
4.	MONIT		ATA	8
	4.1 4.2	PM10 Mor PM2.5 Mor	nitoring Results nitoring Results	
5.	ANALY	(SIS		20
	5.1 5.2 5.3	Correlation NPI Report Air Quality	n with coal production rted PM ₁₀ Emissions from Coal Mining y Data Analysis	
		5.3.1 5.3.2	Comparison of UHAQMN trends with the remainder of NSW Trends within the UHAQMN	
	5.4	Comparis	on against rainfall	
6.	CONCL	LUSIONS		
7.	REFERENCES			
A1	REGRESSION ANALYSES			
A2	SIGNIFICANCE OF STATION GROUP DIFFERENCES			

List of Tables

Table 3.1: Summary of Stations / purpose within the UHAQMN 6 Table 4.1: List of DPIE stations excluded from analysis 8 Table 4.2: Annual and period average PM10 concentrations by station (µg/m³) 9 Table 4.3: Annual and period average PM10 concentrations by region/group and year (µg/m³) 10 Table 4.4: Annual statistics across all regions 11 Table 4.5: Exceedances of the 24 hour (short-term) PM10 standard by station and year 12 Table 4.6: Exceedances of the 24 hour (short-term) PM10 standard by region/group and year 13
Table 4.1: List of DPIE stations excluded from analysis 8 Table 4.2: Annual and period average PM ₁₀ concentrations by station (µg/m³) 9 Table 4.3: Annual and period average PM ₁₀ concentrations by region/group and year (µg/m³) 10 Table 4.4: Annual statistics across all regions 11 Table 4.5: Exceedances of the 24 hour (short-term) PM ₁₀ standard by station and year 12 Table 4.6: Exceedances of the 24 hour (short-term) PM ₁₀ standard by region/group and year 13
Table 4.2: Annual and period average PM_{10} concentrations by station ($\mu g/m^3$)
Table 4.3: Annual and period average PM ₁₀ concentrations by region/group and year (µg/m ³)
Table 4.4: Annual statistics across all regions11Table 4.5: Exceedances of the 24 hour (short-term) PM10 standard by station and year12Table 4.6: Exceedances of the 24 hour (short-term) PM10 standard by region/group and year13
Table 4.5: Exceedances of the 24 hour (short-term) PM_{10} standard by station and year
Table 4.6: Exceedances of the 24 hour (short-term) PM ₁₀ standard by region/group and year
Table 4.7: Annual and period average $PM_{2.5}$ concentrations by station and year ($\mu g/m^3$)
Table 4.8: Annual and period average $PM_{2.5}$ concentrations by region/group and year ($\mu g/m^3)$ 18
Table 5.1: Hunter Valley raw coal production (2013 – 2019)20
Table 5.2: Summary of NPI reported PM ₁₀ emissions for Hunter Valley mining operations (2012/13 –
2018/19 reporting periods)
Table 5.3: Comparison of PM_{10} and $PM_{2.5}$ variability – UHAQMN vs. remainder of NSW regions26
Table 5.4: UHAQMN annual average PM_{10} concentrations by station group and year (μ g/m ³)28
Table 5.5: Annual variance against 2013 – 2019 station group average (µg/m³)30
Table 5.6: BoM NSW/ACT annual rainfall and UHAQMN annual average PM ₁₀ 31

List of Figures

Figure 2.1: Particle deposition within the respiratory tract	5
Figure 3.1: Aerial image showing UHAQMN locations within and around the Hunter Valley	7
Figure 4.1: 2013–2019 average PM10 concentration across DPIE AQMS	.14
Figure 4.2: Annual average PM10 concentration by region/group and year	.15

Figure 4.3: Average days per year that the short term PM_{10} standard is exceeded (2013-2019) – by station	/ 16
Figure 4.4: Average days per year that the short term PM ₁₀ standard is exceeded (2013-2019) – by region	/ 17
Figure 5.1: Comparison of coal production data and PM_{10} concentrations measured by the UHAQN	1N 21
Figure 5.2: Extent of Hunter Valley mining operations within Muswellbrook Shire and Singleton LGA	As 22
Figure 5.3: NPI reported PM ₁₀ emissions for Hunter Valley mining operations (2012/13 – 2018/19 reporting periods)	24
Figure 5.4: Comparison of PM ₁₀ trends against NPI PM ₁₀ emissions from Hunter Valley mining Figure 5.5: Comparison of PM ₁₀ and PM _{2.5} variability – UHAQMN vs. remainder of NSW regions Figure 5.6: UHAQMN annual average PM ₁₀ concentrations by station group and year	25 27 29
Figure 5.7: Comparison of trends between each UHAQMN monitor group	30 31
Figure 5.9: NSW/ACT annual rainfall and UHAQMN annual average PM10	32

Acronyms and Abbreviations

Name	Description
AAQS	Ambient Air Quality Standard
AQMS	Air Quality Monitoring Station
DPIE	Department of Planning, Industry and the Environment
LGA	Local Government Area
NEPC	National Environment Protection Council
NPI	National Pollutant Inventory
NSWMC	New South Wales Minerals Council
NSWEPA	New South Wales Environment Protection Authority
OEH	Office of Environment and Heritage (superseded by DPIE)
PM _{2.5}	Particulate Matter less than 2.5 microns in aerodynamic diameter
PM10	Particulate Matter less than 10 microns in aerodynamic diameter
UHAQAC	Upper Hunter Air Quality Advisory Committee
UHAQMN	Upper Hunter Air Quality Monitoring Network
TSP	Total Suspended Particulate
WHO	World Health Organisation

EXECUTIVE SUMMARY

ERM has been commissioned by the NSW Minerals Council to undertake a review of ambient air quality monitoring data collected across the NSW Department of Planning, Industry and Environment (DPIE) air quality network, inclusive of the Upper Hunter Air Quality Monitoring Network (UHAQMN).

The objective of this analysis is to address the following two questions:

- 1. Has the air quality in the Upper Hunter Valley changed since monitoring began?; and
- 2. Is the air quality in the Upper Hunter Valley measured at the monitoring stations different from air quality measured at other locations in NSW?

Based on this analysis, the following findings are made:

- Annual average PM₁₀ concentrations within the Upper Hunter are broadly consistent with Lower Hunter, but also higher than a range of other regions within NSW. The difference between the Upper Hunter and average concentrations in NSW is small relative to the variability observed between years.
- Across the UHAQMN, the difference between Background, Diagnostic and population-based station groups is indicative of an influence from mining as well as other anthropogenic sources. Lower concentrations are observed at Background stations, and higher concentrations are observed at Diagnostic stations. Concentrations observed at population-based stations fall between these two monitor groups.
- A further analysis of the trends in station group values was conducted for the review period. This
 analysis showed a consistent difference between station groups (within each year), indicating that
 changes in Upper Hunter PM₁₀ concentrations over time are associated with regional conditions
 such as rainfall and are indicative of a minimal change in the contribution from local emission
 sources inclusive of mining
- Significant increases were observed in annual average UHAQMN PM₁₀ concentrations between 2017 and 2019. These increases were found to be generally consistent with trends observed across the remainder of NSW, which showed a correlation with the progressive decrease in annual rainfall and increased prevalence of drought conditions.
- A review of trends in mining operations did not find a correlation between ambient PM_{10} concentrations and coal production, or ambient PM_{10} concentrations and NPI reported PM_{10} emissions.
- A review of NSW/ACT average rainfall showed a correlation between below average rainfall and above average UHAQMN PM₁₀ concentrations.
- As consistent with PM₁₀ monitoring results, PM_{2.5} concentrations are elevated across 2018 and 2019, with highest concentrations measured at the UHAQMN Larger Populations station group. These data likely contain a significant influence from wood smoke (CSIRO, 2013). Trends in annual average concentrations were also found to be consistent with the remainder of NSW.

In the context of the objectives of this analysis:

1. Has the air quality in the Upper Hunter Valley changed since monitoring began?

Yes, concentrations have varied significantly over the period reviewed, but in a manner that is generally consistent with monitoring data collected at DPIE stations across the remainder of NSW.

While correlations with mining emissions and coal production were not identified, a correlation with regional average rainfall was observed. Lower than average rainfall is associated with above average particulate matter concentrations. The mechanisms for this are associated with progression of drought conditions, including increased prevalence of wind erosion/dust storms and bushfire activity.

An increase in the contribution from mining operations would be expected to produce an increasing difference between the concentrations measured at Diagnostic stations and those measured at Background stations. Such a trend was not observed, with the differences between PM_{10} concentrations at Background stations and Diagnostic stations found to be near identical across 2013-2019 (i.e. up to 2 µg/m³ variability). The range in annual average concentrations across this period is of the order of 15 µg/m³. In this respect, the trends in Upper Hunter PM_{10} concentrations are not considered indicative of an increased contribution from mining operations.

2. Is the air quality in the Upper Hunter Valley measured at the monitoring stations different from air quality measured at other locations in NSW?

Yes, the UHAQMN data does feature higher PM₁₀ concentrations than a range of regions across NSW but is also broadly consistent with concentrations measured within the Lower Hunter and Central Coast. In addition, the difference between the Upper Hunter and the remainder of NSW is small in scale relative to the variability in concentrations across NSW. PM_{2.5} concentrations are higher than elsewhere in NSW, and are likely to be influenced by wood smoke, as identified in CSIRO (2013).

1. INTRODUCTION

ERM Australia Pacific P/L (ERM) has been commissioned by the NSW Minerals Council (NSWMC) to undertake a review of ambient air quality monitoring data collected across the NSW Department of Planning, Industry and Environment (DPIE) air quality network, inclusive of the Upper Hunter Air Quality Monitoring Network (UHAQMN).

The Upper Hunter Mining Dialogue ('the Dialogue) hosted their annual forum event in November 2018, seeking feedback from stakeholders on potential environment-focused projects that the Dialogue could explore in future years. A common theme of the feedback received was for the Dialogue to provide guidance to the Upper Hunter community on how to better understand and interpret air quality data.

The Dialogue's Joint Environment Working Group and Joint Advisory Steering Committee discussed various project ideas under the Air Quality theme, and supported the Dialogue to conduct an analysis of publicly available long-term air quality monitoring data to determine whether this had changed over time and how it compared with other regions.

The Dialogue regularly receives community stakeholder feedback regarding the impacts of mining activity on air quality in the Upper Hunter, including concerns that:

- the air quality in the Upper Hunter is worsening; and
- the air quality is poorer in the Upper Hunter than in other regions.

The Dialogue's Steering Committee recently endorsed a project seeking to analyse available long-term air quality data gathered via the Upper Hunter Air Quality Monitoring Network data to provide an assessment of long-term trends of air quality in the Upper Hunter.

The development of the project, including governance arrangements and objectives, was undertaken in consultation with members from the Dialogue's Joint Working Group and Steering Committees, which consist of community, business, government, research and industry representatives.

Under this project, the Dialogue is seeking an analysis and interpretation of existing air quality monitoring network data and other contextual information in order answer the following questions:

- 1. Has the air quality in the Upper Hunter Valley changed since monitoring began?; and
- 2. Is the air quality in the Upper Hunter Valley measured at the monitoring stations different from air quality measured at other locations in NSW?

The intent of this project is to provide:

- accurate information to Upper Hunter stakeholders about the air quality they are experiencing in easily understood terms; and
- clarity and certainty to the Upper Hunter air quality debate through an assessment and comparison
 of air quality measured at the Upper Hunter monitoring network to the air quality measured at other
 NSW regions, with analysis supported by data from independent organisations.

This project was designed to address two specific air quality questions, and is not intended to be a comprehensive assessment of all air quality issues experienced in the Upper Hunter. The Dialogue will continue to work with key stakeholders on air quality issues which may result in the need to undertake further investigations or analysis projects under this theme.

2. PARTICULATE MATTER OVERVIEW

Particulate matter has the capacity to affect health and to cause nuisance effects, and is categorised by size and/or by chemical composition. The potential for harmful effects depends on both. The particulate size ranges are commonly described as:

- TSP refers to all suspended particles in the air. In practice, the upper size range is typically 30 µm.
- PM₁₀ refers to all particles with equivalent aerodynamic diameters of less than 10 µm, that is, all particles that behave aerodynamically in the same way as spherical particles with diameters less than 10 µm and with a unit density. PM₁₀ is a sub-component of TSP.
- PM_{2.5} refers to all particles with equivalent aerodynamic diameters of less than 2.5 μm diameter. These are often referred to as the fine particles and are a sub-component of PM₁₀.

Evidence suggests that health effects from exposure to airborne particulate matter are predominantly related to the respiratory and cardiovascular systems (WHO, 2011). The human respiratory system has in-built defensive systems that prevent larger particles from reaching the more sensitive parts of the respiratory system. Particles larger than 10 μ m, while not able to affect health, can stain materials and generally degrade aesthetic elements of the environment. For this reason, air quality goals make reference to measures of the total mass of all particles suspended in the air, referred to as TSP. In practice, particles larger than 30 to 50 μ m settle out of the atmosphere too quickly to be regarded as air pollutants. The upper size range for TSP is usually taken to be 30 μ m.

Both natural and anthropogenic processes contribute to the atmospheric load of particulate matter. Coarse particles (PM_{2.5⁻¹⁰}) are derived primarily from mechanical processes resulting in the suspension of dust, soil, or other crustal materials from roads, farming, mining and dust storms. Coarse particles also include sea salts, pollen, mould, spores, and other plant parts. Mining dust is likely to be composed of predominantly coarse particulate matter (and larger).

Fine particles or $PM_{2.5}$ are derived primarily from combustion processes, such as vehicle emissions, wood burning, coal burning for power generation and natural processes such as bush fires. Fine particles also consist of transformation products, including sulphate and nitrate particles, and secondary organic aerosol from volatile organic compound emissions. $PM_{2.5}$ may penetrate beyond the larynx and into the thoracic respiratory tract and evidence suggests that particles in this size range are more harmful than the coarser component of PM_{10} .

The size of particles determine their behaviour in the respiratory system, including how far the particles are able to penetrate, where they deposit, and how effective the body's clearance mechanisms are in removing them. This is demonstrated in Figure 3.1, which shows the relative deposition by particle size within various regions of the respiratory tract. Additionally, particle size is an important parameter in determining the residence time and spatial distribution of particles in ambient air and is a key consideration in assessing exposure.

Source: (Phalen et.al, 1991)

Figure 2.1: Particle deposition within the respiratory tract

The health-based assessment criteria used by NSW EPA have, to a large extent, been developed by reference to epidemiological studies undertaken in urban areas with large populations where the primary pollutants are the products of combustion (National Environment Protection Council [NEPC], 1998a; NEPC, 1998b).

Table 2.1 presents the ambient air quality standards (AAQS) for particulate matter as applied within NSW (NSW EPA, 2016) and NEPM compliance frameworks (NEPC, 1998a, 2015).

Pollutant	Averaging Period	Concentration (µg/m ³)
PM ₁₀	24-hour	50
	Annual mean	25
PM _{2.5}	24-hour	25
	Annual mean	8

Table 2.1: NSW ambient air quality standards for particulate matter

The current PM_{10} and $PM_{2.5}$ AAQS provided in EPA (2016) are consistent with the national standards provided in the amended National Environment Protection (Ambient Air Quality) Measure (AG, 2015). It is noted that an annual average PM_{10} standard was introduced in the NEPM at this time, while the Approved Methods annual average PM_{10} standard was changed from 30 µg/m³ to 25 µg/m³ in 2017 to be consistent with the recently introduced NEPM value.

3. UPPER HUNTER AIR QUALITY MONITORING NETWORK (UHAQMN)

The UHAQMN was established between 2010 and 2012 and comprises 14 air quality monitoring stations (AQMS) in total. The UHAQMN is a partnership between the NSW Government and the Upper Hunter coal and power industries. The sites are operated and maintained by Department of Planning Industry and Environment (DPIE) staff using funds contributed by industry under Chapter 5A of the Protection of the Environment (General) Regulation 2009.

The Upper Hunter Air Quality Advisory Committee (UHAQAC) advises the NSW Environment Protection Authority (EPA) and DPIE on matters specifically related to the design and operation of the network. The UHAQAC currently has 14 members representing the community, the coal and power generation industries, local government and NSW government agencies. More information about the about the UHAQMN is available at the DPIE website¹ (DPIE, 2020a)

The data are collected on a continuous basis and are reported on the DPIE website (DPIE, 2020b). The measured parameters include PM_{10} , wind speed, wind direction, temperature and relative humidity, as well as $PM_{2.5}$ at Singleton, Muswellbrook and Camberwell.

Table 3.1 presents a summary of stations and purpose of stations within the UHAQMN, while Figure 4.1 shows the location of these stations within and around the Hunter Valley.

Station type	Purpose	Stations
Larger Populations	Monitoring air quality in the larger population centres	MuswellbrookSingletonAberdeen
Smaller communities	Monitoring air quality in the smaller communities	 Bulga Camberwell Jerrys Plains Maison Dieu Warkworth Wybong
Diagnostic	Providing data that can help to diagnose the likely sources and movement of particles across the region as a whole; they do not provide information about air quality at population centres.	 Mount Thorley Muswellbrook NW Singleton NW
Background	Provide background data; located at both ends of the valley they measure the quality of air entering and leaving the Upper Hunter Valley under predominant winds (south-easterlies and north-westerlies).	- Merriwa - Singleton South

Table 3.1: Summary of Stations / purpose within the UHAQMN

¹ <u>https://www.environment.nsw.gov.au/topics/air/monitoring-air-quality/upper-hunter/upper-hunter-air-quality-reports</u>

Image source: OEH (2016)

Figure 3.1: Aerial image showing UHAQMN locations within and around the Hunter Valley.

4. MONITORING DATA

This section provides a summary of monitoring data collected between 2013 and 2019 by DPIE monitoring stations. This is inclusive of the 14 UHAQMN AQMS, and the broader DPIE air quality monitoring network, which comprises an additional 45 AQMS across NSW.

These seven years of data have been presented for both PM₁₀ and PM_{2.5} as the following:

- Period (2013-2019) average concentration by monitoring station;
- Annual average concentration by region;
- Period (2013-2019) average exceedances by station; and
- Annual exceedances by region.

Monitoring data has been sourced from the DPIE website and presented in both tabulated and graphical formats. Results have been shaded using a green to red colour relative gradient scheme with lowest values shown in green, and highest values shown in red, with the median value shown in yellow. It is noted that this colour gradient scheme is focused on aiding interpretation of the data, and does not follow the Air Quality Index (AQI) colour coding scheme applied on the DPIE website². This gradient scheme has been applied to the annual data and 'all years' result groups separately.

Stations with three or more years of missing data have been excluded from this analysis. These comprise newly introduced stations, as well as several stations that were decommissioned during the study period.

	Table 4.1: List of [OPIE stations excluded	from analys	sis
--	----------------------	------------------------	-------------	-----

PM ₁₀	PM _{2.5}
Albion Park Albion Park Rail Warrawong Armidale Gunnedah Goulburn Narrabri Orange Wagga Wagga Blacktown Campbelltown Cook and Phillip Lidcombe Macarthur Macquarie Park Parramatta North Rouse Hill	 Rozelle Bringelly Kembla Grange Bargo Albury St Marys Bathurst Oakdale Campbelltown West Tamworth

Further detail is provided in the following sections.

Exceedances have been based on performance against the ambient air quality standards presented in Section 2.

² <u>https://www.dpie.nsw.gov.au/air-quality/current-air-quality</u>

4.1 PM₁₀ Monitoring Results

Table 4.2 presents a summary of PM_{10} monitoring results for each DPIE station between 2013 and 2019. Averages across this period are shown in the right hand column.

Table 4.2: Annual and	period average PM ₁₀	concentrations by	v station (ua/m³)
	ponou uvorugo i mito		y olulion (pg/m /

Region / Group	Station		Year								
Region / Group	Station	20)13	2014	2015	201	6	2017	2018	2019	All Tears
Central Tablelands	Bathurst	1:	5.1	14.6	13.4	13.	3	14.1	18.8	27.4	16.7
	Wollongong	17	7.6	17.7	16.9	17.	3	18.1	19.8	22.6	18.6
Illawarra	Kembla Grange	18	3.5	17.3	17.8	20)	20.5	22.7	25.5	20.3
	Albion Park South	14	4.7	16.2	14	14.	.9	15.3	17.8	19.5	16.1
	Wyong	16	6.6	15.1	14.9	15.	2	16.1	18	21.1	16.7
	Wallsend		-	16.9	16.7	16.	6	17.4	19.4	22.9	18.3
	Carrington		-	-	22.8	23.	6	24.4	27.3	31	25.8
Lower Hunter &	Stockton		-	-	35.8	35.	1	36.4	38.7	43.6	37.9
Ochilal Obast	Newcastle	22	2.7	21.4	21.4	21.	6	22.4	24.5	28.4	23.2
	Mayfield		-	-	21.7	22.	6	24.2	26.9	30.8	25.2
	Beresfield	2	1.4	19.4	18.8	19.	1	19.6	21.6	25.9	20.8
North West Slopes	Tamworth	16	6.6	15.8	14.1	15.	3	15.3	20.1	33.7	18.7
Couth West Clance	Albury	1:	5.8	15.9	14.6	15.	.1	15.8	19.8	23.4	17.2
South West Slopes	Wagga Wagga No	rth 22	2.1	20.7	19.9	20.	6	20.6	27.4	35.3	23.8
	Randwick	18	3.8	18.1	18.6	18	3	19.2	21.2	24.1	19.7
	Rozelle	18	3.3	17.9	16.7	16.	8	18.1	-	22.7	18.4
Sydney East	Lindfield	14	1.4	14.1	14	15.	4	16	18	-	15.3
	Chullora	18	3.3	18.1	17.5	18.	.1	20.1	21.9	24.6	19.8
	Earlwood	19	9.9	18.3	17.2	17.	6	18	19.8	23	19.1
-	Richmond	17	7.3	15.4	12.8	16	3	16	18.7	24.2	17.2
Sydney North West	St Marys	1	6	16.7	15	16.	1	16.2	-	24.6	17.4
	Prospect	19	9.2	17.6	17.6	18.	9	18.9	21.9	26	20.0
	Liverpool	2	21	19.1	18.5	19.	6	20.6	24.2	27.7	21.5
	Bringelly	1	7	16.6	15.8	16.	9	19.8	21.3	23.6	18.7
Suda ou South Most	Bargo	1:	5.3	14.3	13.4	14.	4	13.9	16.9	21.2	15.6
Sydney South West	Oakdale	1:	3.6	13.1	11.4	12.	2	12.1	15.4	22.4	14.3
	Campbelltown We	st 1	5.5	17	15.6	16.	.1	15.7	17.9	22.3	17.2
	Camden	1:	5.4	15.6	13.8	14.	4	14.7	17.5	22.5	16.3
	Singleton South	20).2	18.3	16.9	18	3	19.4	23	30.7	20.9
	Merriwa	14	4.9	15.2	13.2	13.	5	14.2	19.2	27.9	16.9
	Singleton NW	2	5.9	22.7	20.9	21.	9	22.7	26.9	34.6	25.1
UHAQMN - DG	Mount Thorley	24	4.7	21.5	19.8	22.	8	25.4	29.1	36.4	25.7
	Muswellbrook NW	18	3.9	19.2	16.7	16.	6	18.5	25	33.7	21.2
	Muswellbrook	22	2.6	21.4	19.1	19.	2	21.7	27.2	34.4	23.7
UHAQMN - LP	Singleton	23	3.3	21	19.3	19.	3	20.8	24	30.1	22.5
	Aberdeen	17	7.3	17.9	15.2	15.	6	17.6	22.3	29.5	19.3
	Maison Dieu	2	5.8	22.7	20.4	20.	4	23.1	27.9	38	25.5
	Camberwell	27	7.8	24.6	22	24.	5	27.4	31.1	39.9	28.2
	Bulga	19	9.2	17.7	15	16.	1	17.2	21.3	28.6	19.3
	Wybong	1:	5.5	16.9	14.8	15.	3	16.6	21.6	28.5	18.5
	Jerrys Plains	18	3.6	18.2	15.5	16.	8	18	24.3	32.1	20.5
	Warkworth	2	1.4	20.6	18.2	18.	6	21.8	26.4	33.4	22.9
	Colour Coding by P	ercentile (s	chem	e applied in	dependentl	y to an	nual d	lata and '	all years')		
0% (Minimum) 10%	20% 30%	6 4	0%	50% (Media)	n) 60%	%	70	1%	80%	90%	100% (Maximum)

Notes: BG – Background, DG – Diagnostic, LP – Larger Populations, SC – Smaller Communities.

As shown in Table 4.2, PM_{10} concentrations are highest in 2019, with Stockton showing the highest results across all stations. Stockton particle levels are influenced by sea salt spray transported by onshore winds, which are dominant during the summer months (OEH, 2018). The second highest concentrations are measured at Camberwell, where PM_{10} concentrations have been associated with mining emissions and other sources such as wood smoke, as identified within UHAQMN reporting (OEH, 2016).

Table 4.3 presents a summary of annual and period average PM_{10} monitoring results that have been averaged into each region/group. The Lower Hunter and Central Coast average has been shown both with and without Stockton data, as noted within the Table 5.3.

Deg						Year						All
Reg	ion / Group	,	2013	2014	2015	2016	201	7 20	18	20	19	Years
Central Tabl	elands		15.1	14.6	13.4	13.3	14.1	1 18	3.8	27	7.4	16.7
Illawarra			16.9	17.1	16.2	17.4	18.0) 20).1	22	2.5	18.3
Lower Hunte	er & Centra	l Coast	20.2	18.2	21.7	22.0	22.9) 25	5.2	29	9.1	22.8 (21.1)
North West	Slopes		16.6	15.8	14.1	15.3	15.3	3 20).1	33	3.7	18.7
South West	Slopes		19.0	18.3	17.3	17.9	18.2	2 23	3.6	29	9.4	20.5
Sydney Eas	t		17.9	17.3	16.8	17.2	18.3	3 20).2	23	3.6	18.8
Sydney Nort	h West		17.5	16.6	15.1	17.0	17.() 20).3	24	1.9	18.4
Sydney Sou	th West		16.3	16.0	14.8	15.6	16.1	1 18	3.9	23	3.3	17.3
UHAQMN												
Background			17.6	16.8	15.1	15.8	16.8	3 21	.1	29	9.3	18.9
Diagnostic			23.2	21.1	19.1	20.4	22.2	2 27	' .0	34	1.9	24.0
Larger Popu	lations		21.1	20.1	17.9	18.0	20.0) 24	l.5	31	.3	21.8
Smaller Con	nmunities		21.4	20.1	17.7	18.6	20.7	7 25	5.4	33	3.4	22.5
		Colour Co	ding by Perc	centile (schen	ne applied ind	dependently	to annual d	ata and 'all	years')			-
0%	10%	20%	30%	40%	50%	60%	70%	80%	909	%	100%	(Maximum)

Table 4.3: Annual	and period	average	oncentrations	bv	region/group	and	vear	(µa/m³)
	and period	average	oncontrations	vу	region/group	ana	ycar	(µg/m)

Note: Regional average excluding Stockton shown in brackets.

As shown in Table 4.3, PM_{10} concentrations vary on both an annual and regional basis, with variability also present within the UHAQMN station groups. Across NSW, the UHAQMN Diagnostic stations show the highest average (24 µg/m³) across all years, while the central tablelands feature the lowest average (17 µg/m³), representing a range of approximately 7 µg/m³. Concentrations measured at Larger Populations and Smaller Communities are broadly consistent with those measured in the Lower Hunter and Central Coast region. It should be noted that unlike other stations featured in this analysis, the Diagnostic stations are not sited with a focus on population exposure.

In terms of interannual variability within each region, the North West Slopes experienced the greatest range in annual average concentrations ($20 \ \mu g/m^3$), while the Illawarra experienced the lowest range ($6 \ \mu g/m^3$). This difference is expected to be primarily due to the varied regional influences of bushfire and dry conditions (inclusive of dust storms) in late-2019. Excluding 2019, the ranges are lower and more regionally consistent ($3 \ to \ 7 \ \mu g/m^3$).

Table 5.4 provides a summary of average PM_{10} concentrations averaged across all regions. While these data are not weighted spatially or by population, they are still useful in considering interannual variability at a broad scale. As shown in Table 4.4, average concentrations across the regions were 72% higher in 2019 (the maximum year) than in 2015 (the minimum year). Also evident is the progressive increase in average concentrations between 2015 and 2019, as consistent with progressive onset of drought conditions³ evident in 2017 and 2018, as discussed in Section 5.4.

³ <u>https://www.dpi.nsw.gov.au/climate-and-emergencies/seasonal-conditions/ssu/nsw-state-seasonal-update-september-2019</u>

Table 4.4: Annual statistics across all regions

	oromotor					Year					Denge
P	arameter		2013	2014	2015	2016	201	7 20	18	2019	Range
Average – A	All Regions	(µg/m³)	18.6	17.7	16.6	17.4	18.3	3 22	2.1	28.6	12.0
Average (%	minimum	year)	112%	106%	100%	105%	110	% 13	3%	172%	72%
Range (µg/r	n³)		8.1	6.5	8.3	8.7	8.8	8	.2	12.4	-
		С	olour Coding	by Percentil	e (scheme a	pplied indep	endently to	each row)			
0% (Minimum)	10%	20%	30%	40%	50% (Median)	60%	70%	80%	90%	100%	(Maximum)

Table 4.5 presents a summary of the number of times which the NSW 24-hour PM_{10} standard is exceeded by station and year, while Table 5.6 presents a summary of total 24-hour PM_{10} exceedances by region and year.

(accessed August 2020).

Table 4.5: Exceedances of the 24 hour (short-term) PM_{10} standard by station and year

Region / Group	Station				Year				Average
	Otation	2013	2014	2015	2016	2017	2018	2019	All Years
Central Tablelands	Bathurst	3	0	2	0	0	8	40	8
	Wollongong	7	0	0	2	1		17	5
Illawarra	Kembla Grange	4	1	1	4	4	10	21	6
	Albion Park South	2	0	0	0	0	2	14	3
	Wyong	1	0	1	0	1	6	19	4
	Wallsend		0	1	1	0		21	5
	Carrington			4	2	10	12	33	12
Central Coast	Stockton			67	60	60	65	102	71
	Newcastle	4	2	3	1	1	8	29	7
	Mayfield			4	1	3	11	36	11
	Beresfield	5	0	2	0	0		30	6
North West Slopes	Tamworth	0	1	1	1	2	9	52	9
South West	Albury	2	5	2	1	0	7	25	6
Slopes	Wagga Wagga North	15	14	7	16	10	34	63	23
	Randwick	3	0	1	0	1	5	19	4
	Rozelle	3	0	1	1	1		18	4
Sydney East	Lindfield	1	0	1	1	0	4		1
	Chullora	4	0	1	1	4	7	20	5
	Earlwood	5	0	1	0	1		17	4
	Richmond	5	0	0	2	1		28	6
Sydney North	St Marys	2	0	1	3	0		26	5
west	Prospect	4	0	1	4	1	8	25	6
	Liverpool	3	0	1	3	2	13	28	7
	Bringelly	3	0	1	3	6		24	6
Sydney South	Bargo	2	1	2	3	1	4	21	5
West	Oakdale	4	1	1	5	0	5	28	6
	Campbelltown West	1	0	1	1	1	3	24	4
	Camden	2	0	1	0	0	6	27	5
	Singleton South	5	0	2	0	2	9	44	9
UHAQMN - BG	Merriwa	0	3	1	0	0	6	48	8
	Singleton NW	28	6	4	4	12	22	62	20
UHAQMN - DG	Mount Thorley	26	3	7	6	21	34	69	24
	Muswellbrook NW	1	1	2	0	1	10	57	10
	Muswellbrook	3	1	2	0	2	13	58	11
UHAQMN - I P	Singleton	12	1	- 3	1	- 5	10	41	10
	Aberdeen	0	2	1	0	2	7	51	9
	Maison Dieu	28	6	5	0	9	25	66	20
	Camberwell	36	12	11	11	33	44	87	33
	Bulga	7	2	2	0	0	8	46	9
UHAQMN - SC	Wybong	2	3	1	1	3	<u> </u>	48	10
	Jerrys Plains	6	6	1	0	1	11	54	11
	Warkworth	Q	3	3	0	1	16	50	13
	olour Coding by Percentile	(scheme ar	oplied indepe	ndently to a	annual data	and 'avera	ide all vea	rs')	13
0% 10%		40%	50%	60%	70%			4 100	% (Maximum)
(Minimum)	2070 30%	40%	(Median)	00%	10%	00%	90%	100	

Notes: BG – Background, DG – Diagnostic, LP – Larger Populations, SC – Smaller Communities.

						Year				-	Average
Regior	n / Group)	2013	2014	2015	2016	201	7 20	18	2019	All Years
Central Tablel	ands		3	0	2	0	0	8	3	40	8
Illawarra			4	0	0	2	2	e	6	17	5
Lower Hunter	& Centra	I Coast	3	1	12	9	11	2	0	39	14
North West Slo	opes		0	1	1	1	2	e e)	52	9
South West SI	opes		9	10	5	9	5	2	1	44	14
Sydney East			3	0	1	1	1	Ę	5	19	4
Sydney North	West		4	0	1	3	1	8	3	26	6
Sydney South	West		3	0	1	3	2	6	6	25	6
UHAQMN					-						
Background			3	2	2	0	1	8	3	46	9
Diagnostic			18	3	4	3	11	2	2	63	18
Larger Popula	tions		5	1	2	0	3	1	0	50	10
Smaller Comm	nunities		15	6	4	2	8	1	9	60	16
	Co	our Coding	by Percentil	e (scheme ap	oplied indepe	ndently to a	nnual data a	and 'average	all yea	ars')	
0% (Minimum)	10%	20%	30%	40%	50% (Median)	60%	70%	80%	90	9% 10	0% (Maximum)

Table 4.6: Exceedances of the 24 hour (short-term) PM₁₀ standard by region/group and year

Note: Regional average excluding Stockton shown in brackets.

Figure 5.1 and Figure 5.2 present PM₁₀ concentrations across DPIE air quality monitoring by station and region/group (respectively), while Figure 5.3 and Figure 5.4 provide average days per year that the short term PM₁₀ standard is exceeded by station and region/group (respectively).

UPPER HUNTER MINING DIALOGUE Air Quality Monitoring Data Analysis Project

Figure 4.1: 2013–2019 average PM₁₀ concentration across DPIE AQMS

Notes: NWS - North West Slopes, CT, Central Tablelands, SWS - South West Slopes, LP - Larger Populations, SC - Smaller Communities, DG - Diagnostic, BG - Background

Figure 4.2: Annual average PM₁₀ concentration by region/group and year

Notes: AAQS: Current NSW Ambient Air Quality Standard. AAQS apply at sensitive receptors, hence are not intended to apply to Diagnostic (DG) monitoring locations. NWS – North West Slopes, CT - Central Tablelands, SWS – South West Slopes, LP – Larger Populations, SC – Smaller Communities, DG – Diagnostic, BG – Background,

Figure 4.3: Average days per year that the short term PM₁₀ standard is exceeded (2013-2019) – by station

Notes: Exceedances apply at sensitive receptors, hence are not intended to apply to Diagnostic (DG) monitoring locations. NWS – North West Slopes, CT - Central Tablelands, SWS – South West Slopes, LP – Larger Populations, SC – Smaller Communities, DG – Diagnostic, BG – Background, AAQS – Ambient Air Quality Standard

Figure 4.4: Average days per year that the short term PM_{10} standard is exceeded (2013-2019) – by region

Notes: AAQS – Ambient Air Quality Standard. AAQS apply at sensitive receptors, hence are not intended to apply to Diagnostic (DG) monitoring locations. NWS – North West Slopes, CT - Central Tablelands, SWS – South West Slopes, LP – Larger Populations, SC – Smaller Communities, DG – Diagnostic, BG – Background.

4.2 PM_{2.5} Monitoring Results

Table 4.7 presents a summary of $PM_{2.5}$ concentrations by station and region/group, while Table 4.8 presents a summary of annual and period average $PM_{2.5}$ monitoring results that have been averaged into each region/group.

De	aion/Crour		C+	ation				Year				All
Re	gion/Group)	50	allon	2013	2014	2015	2016	2017	2018	2019	Years
llowerro			Wollongo	ng	7.7	7	7.6	7.4	7.1	7.3	9	7.6
mawarra			Albion Pa	rk South	-	-	6.4	7.2	6.6	6.8	8.6	7.1
			Wyong		6.7	5.5	5.2	5.7	5.8	6.8	10.5	6.6
			Wallsend		7.7	6.7	7.3	8	7.3	7.5	10.4	7.8
			Carringto	า	-	-	8.1	8.5	8.6	8.2	11	8.9
Lower Hun	ter & Centi	al Coast	Stockton		-	-	9.5	9.7	9.8	10	13	10.4
			Newcastle	Э	-	8.1	7.8	7.8	7.4	7.8	10.9	8.3
			Mayfield		-	-	7.4	7.4	7.5	8.3	11.2	8.4
			Beresfield	l	8.2	7.5	7.3	7.4	7.6	8.7	12.1	8.4
South Wes	t Slopes		Wagga W	agga North	7.9	7.5	7.6	7.4	8.1	8.4	11.3	8.3
Qualman v E a	-1		Chullora		8.4	9	8	8	9.5	8.6	11.5	9.0
Sydney Ea	SL		Earlwood		7.9	7.8	8.5	8.1	7.3	7.8	10.5	8.3
Cudnov No	with Woot		Richmond	ł	8.3	6.7	7.7	7.9	7	8.1	13.1	8.4
Sydney No	ntri vvest		Prospect		-	-	8.2	8.7	7.7	8.5	11.9	9.0
Cudnou Co	uth West		Liverpool		9.4	8.6	8.5	8.7	8.9	10.1	12.8	9.6
Sydney So	uth west		Camden		6.5	6.3	6.2	6.4	6.7	7.2	11.8	7.3
UHAQMN												
			Muswellb	rook	9.4	9.7	8.7	8.4	9.4	9.4	12.2	9.6
Larger Pop	oulations		Singleton		7.9	7.8	7.6	7.9	8.2	8.1	10.9	8.3
Smaller Co	ommunities		Camberw	ell	8.2	7.8	7.2	7.5	7.4	8.4	10.5	8.1
		Colour Co	ding by Perc	entile (schem	e applied in	dependen	tly to annu	ial data ai	nd 'all ye	ars')		
0% (Minimum)	10%	20%	30%	40%	50% (Median)	60%	70%	6 8	0%	90%	100% (N	/laximum)

Table 4.7: Annual and period average $PM_{2.5}$ concentrations by station and year (µg/m³)

Table 4.8: Annual and period average PM_{2.5} concentrations by region/group and year (µg/m³)

Dog	ion / Crow						Year					
Reg	ion / Group	,	2013	2014	2015	2016	201	7 20	18	20	019	All
Illawarra			7.7	7.0	7.0	7.3	6.9	7	.1	1	1.1	7.7
Lower Hunte	er & Centra	al Coast	7.5	7.0	7.5	7.8	7.7	8	.2	1	7.3	9.0
South West	Slopes		7.9	7.5	7.6	7.4	8.1	8	.4	1	1.3	8.3
Sydney Eas	t		8.2	8.4	8.3	8.1	8.4	8	.2	1	6.5	9.4
Sydney Nor	th West		8.3	6.7	8.0	8.3	7.4	8	.3	2	0.5	9.6
Sydney Sou	th West		8.0	7.5	7.4	7.6	7.8	8	.7	1	8.9	9.4
UHAQMN -	LP		8.7	8.8	8.2	8.2	8.8	8	.8	1	8.0	9.9
UHAQMN -	SC		8.2	7.8	7.2	7.5	7.4	8	.4	1	7.3	9.1
		Colour Co	oding by Perc	entile (schen	ne applied ind	dependently	to annual d	ata and 'all	years')			
0% (Minimum)	10%	20%	30%	40%	50% (Median)	60%	70%	80%	90	1%	100%	(Maximum)

Notes: LP – Larger Populations, SC – Smaller Communities.

As consistent with PM₁₀ monitoring results, concentrations are elevated across 2018, and 2019, with highest concentrations measured at the UHAQMN Larger Populations. Next highest are the Sydney North West, Sydney South West and Sydney East regions, followed by the UHAQMN Smaller Communities group, with the lowest concentrations are measured in the Illawarra.

Studies into the composition of $PM_{2.5}$ within the Upper Hunter are documented within CSIRO (2013). This study notes a significant contribution from wood smoke to $PM_{2.5}$ concentrations, comprising approximately 62% and 38% of $PM_{2.5}$ over winter months, and 14% and 30% of $PM_{2.5}$ overall at Singleton and Muswellbrook (respectively).

Secondary sulphate, as produced by combustion of sulphur containing fuels, is also noted of significance, while soil (inclusive of fugitive dust from mining operations and other sources) was estimated to comprise 12% and 11% of PM_{2.5} measure at Singleton and Muswellbrook (respectively).

5. ANALYSIS

As relevant to the objective of this project, this section contains an analysis of the following parameters:

- Correlation with coal production
- Correlation with mining emissions
- Correlation with monitoring trends observed elsewhere in NSW.
- Changes in the difference between Diagnostic and Background monitoring stations within the UHAQMN.
- Correlation with rainfall.

Further detail of this analysis is provided in the following sections.

5.1 **Correlation with coal production**

Raw coal production is considered a general indicator of the intensity of mining operations within the Hunter Valley, and hence provides context on the potential contribution of mining operations to changes in ambient air quality.

Table 5.1 presents a summary of raw coal production across 2013 – 2019.

Year	Hunter Valley Raw Coal Production (Mt)	Percentage of 2013 Raw Coal Production
2013	158	100%
2014	160	102%
2015	146	92%
2016	145	92%
2017	146	92%
2018	151	96%
2019	155	99%

Table 5.1: Hunter Valley raw coal production (2013 – 2019)

As shown in Table 5.1, the annual coal production rates have been generally consistent over the period, ranging between 92% and 102% of the 2013 value. 2013 has been nominated as a reference year in order to show the relative scale of coal production since the beginning of the study period.

The relationship between particulate matter emissions to raw coal production would be influenced by several factors including the following:

- The proportion of new mines in the construction phase, e.g. operations where no or minimal coal is produced despite the presence of construction activities.
- The accessibility of the coal seam, whereby less accessible coal resources would generally require more excavation and/or blasting, thus increasing the quantity of particulate matter emissions per unit of coal produced.
- The ratio of underground to open cut mining operations.

Noting the progressive nature in which the majority of mines have developed within the Hunter Valley, as well as variety of mines operating across different points of their lifecycle, coal production data is considered directly relevant to this analysis as an overall indicator of the intensity of mining operations within the Hunter Valley.

A comparison of annual coal production against the UHAQMN data is provided in Figure 6.1.

Figure 5.1: Comparison of coal production data and PM10 concentrations measured by the UHAQMN

As shown in these data, there is no visually apparent correlation between raw coal production and ambient PM_{10} concentrations measured by the UHAQMN. Figure 6.1 shows inconsistency in the scale of variability in each metric across 2013 – 2019, with minor proportional variability⁴ in coal production relative to significant proportional variability in annual average PM_{10} . A detailed regression analysis is contained in Appendix A1.1. The analysis does not identify a statistically significant correlation in the data.

As a further supplement to this analysis, a comparison against NPI reported mining emissions is provided in Section 5.2.

5.2 NPI Reported PM₁₀ Emissions from Coal Mining

The National Pollutant Inventory (NPI) is used to track pollution across Australia, providing public access to information about the emission and transfer of toxic substances.

Australian, state and territory governments have agreed to legislation called National Environment Protection Measures (NEPMs), which help protect or manage particular aspects of the environment. Australian industries are required to monitor, measure and report their emissions under this legislation.

The NPI contains data on 93 substances that have been identified as important due to their possible effect on human health and the environment. The data comes from facilities like mines, power stations and factories, and from other sources such as households and transport.

Facility operators determine their own emissions and transfers, and diffuse emissions from households and other sources like motor vehicles are estimated by government agencies⁵.

Emissions from coal mining operations are reported in an ongoing annual (July to June) basis under the NPI reporting framework.

⁴ Proportional variability as the relative magnitude of maximum and minimum values within each variable range.

⁵ <u>http://www.npi.gov.au/about-npi (</u>accessed May 2020).

To provide context on trends in annual emissions over the analysis period, the NPI has been interrogated for PM_{10} emissions from coal mining operations located within Muswellbrook Shire and Singleton Local Government Areas (LGAs). These two LGAs cover the extent of open cut operations within the Hunter Valley, as shown in Figure 6.2.

Note: Image sourced from Google Earth Pro.

Figure 5.2: Extent of Hunter Valley mining operations within Muswellbrook Shire and Singleton LGAs

Table 5.2 and Figure 6.3 present NPI reported PM_{10} emissions for Hunter Valley mining operations across the seven most recent reporting years (2012/13 through 2018/19) including total PM_{10} emissions across 19 mining entities. Table 5.2 also provides total annual PM_{10} emissions as a percentage of those reported during the 2012/2013 reporting period. 2012/2013 has been nominated as a reference year to show the relative scale of coal production since the beginning of the study period.

As shown in these data, emissions in the most recent (2018/2019) reporting period are approximately 20% lower than those reported in 2012/2013.

Table 5.2: Summary of NPI reported PM₁₀ emissions for Hunter Valley mining operations (2012/13 – 2018/19 reporting periods)

Easility Identifier		F	PM10 Emissions b	by NPI Reporting	Period (kt/annum)	
Facility identifier	2012/13	2013/2014	2014/15	2015/16	2016/17	2017/18	2018/19
Ashton Coal Mine Camberwell [Camberwell Via Singleton-NSW]	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Bulga Coal Surface and Underground Operations [Singleton-NSW]	10.6	4.6	4.0	5.2	5.1	3.8	5.1
Hunter Valley Operations [Lemington Via Singleton-NSW]	11.4	9.9	9.7	10.8	11.1	10.8	10.8
Mount Thorley Warkworth Operations [Mount Thorley Via Singleton-NSW]	9.8	8.9	8.2	9.2	9.4	8.6	8.7
Integra Coal Underground Mine [Singleton-NSW]	0.0	0.0	0.0	0.0	0.0	0.0	0.1
Liddell Coal Operations [Ravensworth-NSW]	5.8	6.7	6.2	5.0	4.5	3.9	5.1
Rix's Creek Pty Limited [Singleton-NSW]	0.5	1.2	1.3	1.2	1.6	1.6	1.7
Wambo Mine [Warkworth-NSW]	4.4	6.6	3.0	3.7	3.9	3.4	2.4
Glendell and Ravensworth East [Ravensworth Via Singleton-NSW]	3.0	2.5	2.6	2.8	2.8	3.2	3.2
Ravensworth Mine Complex [Ravensworth Via Singleton-NSW]	5.6	11.4	9.1	5.8	6.1	5.9	6.0
Mt Owen Mine [Ravensworth-NSW]	3.7	2.9	2.9	2.8	3.3	3.7	3.9
Integra Coal Open Cut Mine [Singleton-NSW]	2.3	2.1	0.7	0.0	0.0	0.0	0.0
United Colliery [Warkworth-NSW]	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Drayton Mine [Muswellbrook-NSW]	4.8	2.4	2.0	1.4	0.9	0.0	1.7
Bengalla Operations [Muswellbrook-NSW]	4.5	4.4	4.7	4.5	5.2	4.3	5.0
Mount Pleasant Operations [Muswellbrook -NSW]	0.0	0.0	0.0	0.0	0.0	0.6	0.8
Mt Arthur Coal [Muswellbrook-NSW]	7.7	9.0	10.6	10.1	9.7	10.1	9.0
Muswellbrook Coal No.1 and No.2 Open Cut Mines [Muswellbrook-NSW]	0.5	0.6	0.7	0.7	0.6	0.7	0.7
Mangoola Coal [Muswellbrook-NSW]	4.7	5.9	4.4	4.9	2.6	2.6	3.1
TOTAL (ktpa)	79.3	79.2	70.1	68.2	66.9	63.3	67.4
TOTAL (Percentage of 2012/13 reporting Period)	100%	100%	88%	86%	84%	80%	85%

Figure 5.3: NPI reported PM₁₀ emissions for Hunter Valley mining operations (2012/13 – 2018/19 reporting periods)

Figure 6.4 presents a comparison of annual PM₁₀ trends against NPI PM₁₀ emissions from Hunter Valley mining operations.

A shown in these data, there is no visually apparent correlation between changes in estimated PM_{10} emissions from mining and changes in annual average PM_{10} concentrations measured within the UHAQMN. A detailed regression analysis is contained in Appendix A1.2. This analysis does not identify a statistically significant correlation in these data.

5.3 Air Quality Data Analysis

The PM_{10} data reviewed in this analysis covers a total of 42 monitoring stations, including 14 within the UHAQMN, and 28 across the remainder of NSW. This constitutes a significant dataset for the analysis of trends, comprising over 300 annual average results across the 7 years of data reviewed.

5.3.1 Comparison of UHAQMN trends with the remainder of NSW

In reviewing the influence of mining operations, it is useful to consider the trends in PM_{10} concentrations observed in the UHAQMN in the context of changes in PM_{10} concentrations measured at other locations in the NSW monitoring network. An increase in the influence from mining would lead to increases in annual average PM_{10} concentrations that are not observed elsewhere in NSW. Conversely consistency with the remainder of NSW would indicate that regional factors are influencing PM_{10} concentrations rather than emissions from mining operations.

Figure 5.4: Comparison of PM₁₀ trends against NPI PM₁₀ emissions from Hunter Valley mining

Table 5.3 presents a comparison of average PM_{10} concentrations measured across NSW, with the UHAQMN and the remainder of NSW shown separately. Annual data have also been presented as a percentage of the respective 2013-2019 average⁶.

For completeness, this relationship has also been shown for $PM_{2.5}$ which has a lesser association with mechanically generated dust emissions such as those from mining. Figure 6.5 provides a graphical representation of these data.

Monitoring	Deremeter				Year				All
Subset	Parameter	2013	2014	2015	2016	2017	2018	2019	Years
PM ₁₀									
	Concentration (µg/m ³)	21.2	20.1	17.8	18.3	20.4	25.0	32.4	22.2
UHAQIVIN	% of average (all years)	96%	91%	80%	83%	92%	113%	146%	-
Remainder of	Concentration (µg/m ³)	17.4	16.7	16.2	17.0	17.5	20.9	26.7	18.9
NSW	% of average (all years)	92%	88%	86%	90%	92%	110%	141%	-
PM _{2.5}									
	Concentration (µg/m ³)	7.9	7.3	7.6	7.7	7.7	8.1	15.9	8.9
UHAQIVIN	% of average (all years)	89%	82%	85%	87%	86%	91%	179%	-
Remainder of	Concentration (µg/m ³)	8.4	8.3	7.7	7.8	8.1	8.6	17.6	9.5
NSW	% of average (all years)	89%	87%	81%	82%	85%	90%	186%	-

Table 5.3: Comparison of PM₁₀ and PM_{2.5} variability – UHAQMN vs. remainder of NSW regions

Note: *Larger Populations and Smaller Communities station groups.

⁶ Data have been referenced against the 2013-2019 average to minimise offset error from scatter that may occur with individual reference years and station groups.

Note: UHAQMN - Larger Population and Smaller Communities station groups.

Figure 5.5: Comparison of PM₁₀ and PM_{2.5} variability – UHAQMN vs. remainder of NSW regions

The general consistency of temporal trends in the UHAQMN and 'Remainder of NSW' monitoring subsets show that the changes in PM_{10} concentrations within the Upper Hunter are generally consistent with changes experienced across the rest of NSW. A detailed regression analysis is contained in Appendix A1.3 which identifies a statistically significant correlation between the UHAQMN and 'Remainder of NSW' datasets. This in turn indicates that the changes in annual average PM_{10} concentrations are associated with regional PM sources and that the contribution of mining operations

on the UHAQMN to these trends is not discernible. This finding was not sensitive to the inclusion of Stockton data, with 'Remainder of NSW' values showing 1% or less variance with the exclusion of Stockton data.

Of note, this consistency was also observed in PM_{2.5}, indicating that changes in PM_{2.5} (less likely to be attributed to mining operations) are generally consistent with those observed elsewhere in NSW.

5.3.2 Trends within the UHAQMN

In addition to performance outside of the region, the UHAQMN dataset can be analysed by station group to assess potential changes in the influence from mining operations. In this analysis, an increase in the influence from mining would lead to a greater difference between measurements taken at Diagnostic stations and Background stations:

- Under a hypothesis that air quality trends are driven by an increase in regional and interregional influences (i.e. with no increase in the influence from mining operations), it would be expected that all station groups would follow a similar trend across the years of monitoring data.
- Under a hypothesis that worsening air quality is driven by an increase in localised mining operations, it would be expected to see an increasing disparity between the Background and other station groups, especially the Diagnostic group.

This is due to the fact that air quality impacts are most pronounced close to the emission sources (e.g. Diagnostic stations), while at areas more distant (e.g. Background stations) the impacts, if detectable, are less pronounced. In addition, broad scale regional and/or remote influences will impact Diagnostic and Background stations to an equal or similar extent.

Table 5.4 presents UHAQMN annual average PM₁₀ concentrations by station group and year, while Figure 6.6 shows a graphical representation of these data.

Ctation Crown		Year									
Station Group	2013	2014	2015	2016	2017	2018	2019	Years			
Larger Populations	21.1	20.1	17.9	18.0	20.0	24.5	31.3	21.8			
Smaller Communities	21.4	20.1	17.7	18.6	20.7	25.4	33.4	22.5			
Diagnostic	23.2	21.1	19.1	20.4	22.2	27.0	34.9	24.0			
Background	17.6	16.8	15.1	15.8	16.8	21.1	29.3	18.9			

Table 5.4: UHAQMN annual average PM₁₀ concentrations by station group and year (µg/m³)

Figure 5.6: UHAQMN annual average PM₁₀ concentrations by station group and year

As can be seen in these data, across the years Diagnostic stations report the highest results, while Smaller Communities and Larger Populations stations fall between the Diagnostic and Background stations. The differences in results between these station groups are generally indicative of the influence from mining operations as well as other emission sources within the Upper Hunter. An analysis of the significance of these observed differences is provided in Appendix A2.

For each station group, Table 6.5 shows the annual variance against the 2013 - 2019 average for that particular station group. This process removes the offset bias associated with station groups (e.g. Background stations reporting lower concentrations than Diagnostic stations). This process is instructive in showing changes in the difference between station groups across the study period. The same data are shown graphically Figure 6.7.

Station Group		Year								
	2013	2014	2015	2016	2017	2018	2019			
Larger Populations	-1	-2	-4	-4	-2	3	9			
Smaller Communities	-1	-2	-5	-4	-2	3	11			
Diagnostic	-1	-3	-5	-4	-2	3	11			
Background	-1	-2	-4	-3	-2	2	10			

Table 5.5: Annual variance against 2013 – 2019 station group average (µg/m³)

Figure 5.7: Comparison of trends between each UHAQMN monitor group

As shown in Figure 6.7, the differences between PM_{10} concentrations at Background stations and Diagnostic stations are near identical across 2013-2019 (i.e. up to 2 µg/m³ variability), while the range in annual average concentrations across this period is in the order of 15 µg/m³. As consistent with previous analysis, this indicates that changes in Upper Hunter PM_{10} concentrations are associated with regional conditions and are indicative of a minimal change in the contribution from local emission sources inclusive of mining.

5.4 Comparison against rainfall

The Bureau of Meteorology provide regional averaged rainfall trends as both total rainfall, and rainfall anomaly from the year 1900 onwards (BoM, 2020). Figure 6.8 presents the NSW/ACT annual rainfall anomaly⁷ for the period 1900 – 2019, which is referenced against the 1961-1990 (30 year) average. As shown in this figure, with the exception of 2016, all years between 2013 and 2019 have featured below average rainfall, with 2019 comprising the driest year on the record.

⁷ Rainfall anomaly represents the difference of a given year against the 1961-1990 average.

Image source: BOM (2020)

Figure 5.8: BoM NSW/ACT annual rainfall anomaly 1900 - 2019

Table 5.6 presents BoM NSW/ACT annual rainfall and UHAQMN annual average PM_{10} over the period 2013-2019. These data are shown in Figure 6.9.

Table 5.6 [•] BoM NSW/ACT	annual rainfall and UHAQMN	annual average PM ₁₀
		annual average i mito

Paramotor	Year								
i didificici	2013	2014	2015	2016	2017	2018	2019		
UHAQMN PM ₁₀ (µg/m³)*	21	20	18	18	20	25	32		
NSW Rainfall	464	467	541	661	453	333	250		

Note: *Larger Populations and Smaller Communities station groups.

Figure 5.9: NSW/ACT annual rainfall and UHAQMN annual average PM₁₀

As shown in these data, there is a negative correlation between rainfall and particulate matter concentrations across the UHAQMN. Further review of these data is presented in Appendix A1.4, which identifies a statistically significant correlation in these data. Given the consistency between PM_{10} trends across NSW and the UHAQMN, this relationship also holds for NSW PM_{10} concentrations more broadly.

6. CONCLUSIONS

ERM has been commissioned by the NSW Minerals Council to undertake a review of ambient air quality monitoring data collected across the NSW Department of Planning, Industry and Environment (DPIE) air quality network, inclusive of the Upper Hunter Air Quality Monitoring Network (UHAQMN).

The objective of this analysis is to address the following two questions:

- 1. Has the air quality in the Upper Hunter Valley changed since monitoring began?; and
- 2. Is the air quality in the Upper Hunter Valley measured at the monitoring stations different from air quality measured at other locations in NSW?

Based on this analysis, the following findings are made:

- Annual average PM₁₀ concentrations within the Upper Hunter are broadly consistent with Lower Hunter, but also higher than a range of other regions within NSW. The difference between the Upper Hunter and average concentrations in NSW is small relative to the variability observed between years.
- Across the UHAQMN, the difference between Background, Diagnostic and population-based station groups is indicative of an influence from mining as well as other anthropogenic sources. Lower concentrations are observed at Background stations, and higher concentrations are observed at Diagnostic stations. Concentrations observed at population-based stations fall between these two monitor groups.
- A further analysis of the trends in station group values was conducted for the review period. This
 analysis has shown a consistent difference between station groups (within each year), indicating
 that changes in Upper Hunter PM₁₀ concentrations over time are associated with regional
 conditions such as rainfall and are indicative of a minimal change in the contribution from local
 emission sources inclusive of mining
- Significant increases were observed in annual average UHAQMN PM₁₀ concentrations between 2017 and 2019. These increases have been found to be generally consistent with trends observed across the remainder of NSW, which show a correlation with the a progressive decrease in annual rainfall and increased prevalence of drought conditions.
- A review of trends in mining operations has not found a correlation between ambient PM_{10} concentrations and coal production, or ambient PM_{10} concentrations and NPI reported PM_{10} emissions.
- A review of NSW/ACT average rainfall has shown a correlation between below average rainfall and above average UHAQMN PM₁₀ concentrations.
- As consistent with PM₁₀ monitoring results, PM_{2.5} concentrations are elevated across 2018, and 2019, with highest concentrations measured at the UHAQMN Larger Populations station group, which likely contains a significant influence from wood smoke (CSIRO, 2013). Trends in annual average concentrations were also found to be consistent with the remainder of NSW.

In the context of the objectives of this analysis:

1. Has the air quality in the Upper Hunter Valley changed since monitoring began?

Yes, concentrations have varied significantly over the period reviewed, but in a manner that is generally consistent with monitoring data collected at DPIE stations across the remainder of NSW.

While correlations with mining emissions and coal production were not identified, a correlation with regional average rainfall was observed. Lower than average rainfall is associated with above average particulate matter concentrations. The mechanisms for this are associated with progression of drought conditions, including increased prevalence of wind erosion/dust storms and bushfire activity.

An increase in the contribution from mining operations would be expected to produce an increasing difference between the concentrations measured at Diagnostic stations and those measured at Background stations. Such a trend was not observed, with the differences between PM_{10} concentrations at Background stations and Diagnostic stations found to be near identical across 2013-2019 (i.e. up to 2 µg/m³ variability). The range in annual average concentrations across this period is of the order of 15 µg/m³. In this respect, the trends in Upper Hunter PM_{10} concentrations are not considered indicative of an increased contribution from mining operations.

2. Is the air quality in the Upper Hunter Valley measured at the monitoring stations different from air quality measured at other locations in NSW?

Yes, the UHAQMN data does feature higher PM₁₀ concentrations than a range of regions across NSW, but is also broadly consistent with concentrations measured within the Lower Hunter and Central Coast. In addition, the difference between the Upper Hunter and the remainder of NSW is small in scale relative to the variability in concentrations across NSW. PM_{2.5} concentrations are higher than elsewhere in NSW, and are likely to be influenced by wood smoke, as identified in CSIRO (2013).

7. **REFERENCES**

AG 2015, Variation to the National Environment Protection (Ambient Air Quality) Measure, Australian Government – Federal Register of Legislation, December 2015, https://www.legislation.gov.au/Details/F2016L00084 (accessed May 2020)

BoM 2020, Bureau of Meteorology – Australian climate variability & change – Time series graphs, <u>http://www.bom.gov.au/climate/change/#tabs=Tracker&tracker=timeseries&tQ=graph%3Drranom%26</u> <u>area%3Dnsw%26season%3D0112%26ave_yr%3DA</u>, accessed February 2020

CSIRO 2013, *Upper Hunter Valley Particle Characterization Study*, Final Report, Commonwealth Scientific and Industrial Research Organisation, 17 September 2013.

DPIE 2020b, *DPIE – Upper Hunter Air Quality Monitoring Reports*, <u>https://www.environment.nsw.gov.</u> <u>au/topics/air/monitoring-air-quality/upper-hunter/upper-hunter-air-quality-reports</u> (accessed February 2020.

DPIE 2020b *DPIE – Download and Search for Air Quality Data*, <u>https://www.dpie.nsw.gov.au/air-guality/search-for-and-download-air-guality-data</u>, accessed January 2020.

NSW EPA 2016, *The Approved Methods for the Modelling and Assessment of Air Pollutants in NSW*, NSW Environment Protection Authority, 2016.

NEPC 1998a, *Ambient Air – National Environment Protection Measures for Ambient Air Quality*. National Environment Protection Council, Canberra.

NEPC 1998b, *National Environmental Protection Measure and Impact Statement for Ambient Air Quality* National Environment Protection Council Service Corporation, Level 5, 81 Flinders Street, Adelaide SA 5000.

OEH 2018, Upper Hunter Air Quality Monitoring Network, 2015 Annual Report, Office of Environment and Heritage, October 2020.

OEH 2018, *Air Quality in Newcastle: Summer 2018-19*, Office of Environment and Heritage, April 2019, <u>https://www.environment.nsw.gov.au/-/media/OEH/Corporate-Site/Documents/Air/air-quality-monitoring-network-newcastle-summer-2019-190150.pdf</u>, accessed February 2020.

WHO 2011, World Health Organisation Air Quality and Health Fact Sheet Number 313 http://www.who.int/mediacentre/factsheets/fs313/en/index.html.

APPENDIX A TECHNICAL ADDENDUM: STATISTICAL ANALYSES

A1 REGRESSION ANALYSES

This section presents a brief summary of regression analyses that assess the statistical significance relationships reviewed in Section 5, including:

- Annual Average UHAQMN PM₁₀ concentration vs Hunter Valley Coal Production (as discussed Section 5.1)
- Annual Average UHAQMN PM₁₀ concentration vs NPI reported PM₁₀ emissions from Hunter Valley coal mining (as discussed in Section 5.2)
- Annual percentage variance against 2013-2019 average: UHAQMN vs 'Remainder of NSW', PM₁₀ and PM_{2.5} (as discussed in Section 5.3).
- Annual Average UHAQMN PM₁₀ concentration against NSW mean annual rainfall (as discussed in Section 5.4)

Within this analysis, the UHAQMN annual average PM₁₀ concentrations incorporate the Larger Populations and Smaller Communities station groups, as relevant to population exposure. The findings of this analysis may also be extended to the entire UHAQMN, noting that annual average values are similar (within 1% on average) when all station groups are included.

For each relationship, the statistical significance has been examined by application of a linear regression, where it is assumed that annual average PM₁₀, as a dependent variable, is a linear function of the relevant independent variable (e.g. coal production or rainfall).

Statistical significance has been assessed with review of the correlation coefficient (r²) and P-value, where:

- the r² value represents the proportion of sample variability that is attributable to the least square error regression.
- the P-value represents the probability that the two variables are unrelated.

The P-value has been established by testing the probability of a null hypothesis, which represents a scenario where the two variables are independent. Mathematically, this involves testing the probability that the linear coefficient of the independent variable is equal to zero, in which case, the variability of the results against the independent variable (as defined by a least square error linear regression) is random.

A lower P-value represents a lower probability that the two variables are unrelated. In this analysis, the conventional metric of P < .05 has been adopted to define a correlation as statistically significant.

A1.1 Coal Production

Figure A1.1 presents Hunter Valley coal production against 2013-2019 UHAQMN annual average PM₁₀ concentration. Figure A1.2 presents these data excluding 2019 (i.e. treating it as an outlier). In the absence of a strong correlation across the range of curve fitting options examined⁸ the most simplistic (linear) regression has been presented for both datasets.

⁸ Microsoft Excel-based exponential, linear, logarithmic, polynomial and power law regressions were examined.

Figure A1.1: Scatter plot showing annual Hunter Valley coal production against 2013-2019 annual average UHAQMN PM₁₀ concentration (with linear regression).

Analysis of the conformity of the data to these regressions provides P-values of .38 (2013-2019) and .51 (2013-2018), which are outside of the significance threshold (i.e. P < .05), thus indicating that the relationship between annual coal production and annual average PM_{10} in these data is not significant. The respective r² values of 0.15 and 0.12 indicate that the least squares regressions account for 15% and 12% of the variability observed under a hypothesis that annual average PM_{10} is a linear function of annual coal production.

A1.2 NPI Reported PM₁₀ Emissions

Figure A1.3 presents NPI reported PM₁₀ emissions for Hunter Valley coal mining against 2013-2019 UHAQMN annual average PM₁₀ concentration. Figure A2.4 presents these data excluding 2019 (i.e. treating it as an outlier). In the absence of a strong correlation across the range of curve fitting options examined⁹ the most simplistic (linear) regression has been applied to both datasets.

⁹ Exponential, linear, logarithmic, polynomial and power law regressions were examined.

For simplicity, NPI reported emissions have been forward-dated 6 months to align with calendar years, thus representing a limitation of this analysis. Noting this, the annual NPI data presented in Section 5.2 show a fairly consistent trend, with a monotonic decrease between 2013-2018, hence this limitation is considered minor.

Figure A1.3: Scatter plot showing NPI reported PM₁₀ emissions for Hunter Valley coal mining against 2013-2019 annual average UHAQMN PM₁₀ concentration (with linear regression).

Figure A1.4: Scatter plot showing NPI reported PM₁₀ emissions for Hunter Valley coal mining against 2013-2019 annual average UHAQMN PM₁₀ concentration (with linear regression).

Analysis of the conformity of the data to these regressions provides P-values of 0.48 (2013-2019) and 0.61 (2013-2018), which are outside of the significance threshold (i.e. P < .05), thus indicating that the relationship between annual NPI reported PM_{10} emissions and annual average PM_{10} in these data is not significant. The respective r² values of 0.10 and 0.07 indicate that the least squares regressions account for 10% and 7% of the variability observed under a hypothesis that annual average PM_{10} has a linear relationship with NPI reported PM_{10} emissions from Hunter Valley coal mining.

Considering the physical implications of this regression, the negative gradient implies that there is a reduction of ambient PM_{10} with an increase in PM_{10} emissions. Based on conservation of mass

assumptions, this relationship is not considered plausible, thus corresponding with the lack of significance observed.

A1.3 Annual Variance against 2013-2019 Average (PM₁₀ and PM_{2.5})

Figure A1.5 presents annual percentage variance against 2013-2019 averages for UHAQMN vs 'Remainder of NSW' datasets, with a linear regression.

Figure A1.5: Annual percentage variance against 2013 - 2019 average (PM10 and PM2.5)

As shown in these data, there is a linear relationship in the annual proportional variability experienced in the UHAQMN and the remainder of NSW. Analysis of the conformity of the data to these regressions provides a P-values of < .001, which are within the significance threshold (i.e. P < .05), and indicates a strong relationship between in the annual variability of the datasets.

A1.4 Rainfall

Figure A1.6 presents NSW mean annual rainfall against 2013-2019 UHAQMN annual average PM_{10} concentration.

Figure A1.6: Scatter plot showing average 2013-2019 UHAQMN PM₁₀ concentration against NSW mean annual rainfall (with linear regression).

Analysis of the conformity of the data to these regressions provides a P-value of .007, which is within the significance threshold (i.e. P < .05), thus indicating that the relationship between NSW mean annual rainfall and annual average PM_{10} in these data is significant. The r² value of 0.80 indicates that the least squares regression accounts for 80% of the variability observed under a hypothesis that annual average PM_{10} has a linear relationship with NSW mean annual rainfall. The use of a power law based regression offered minor refinement beyond a linear regression, resulting in an r² value of 0.93. This was not investigated further given the significance of the linear regression.

In a physical context, this observed correlation is supported by the known interrelationship between rainfall, drought, and the prevalence of particulate matter generating phenomena such as dust storms and bushfires.

A2 SIGNIFICANCE OF STATION GROUP DIFFERENCES

This section presents a brief supporting analysis that assesses the significance of differences in observed period average PM₁₀ concentrations across various station groups. For each station group, comparison has been made against the UHAQMN Larger Populations and Smaller Communities (UHAQMN [LP/SC]) average.

For a given station group comparison, the following statistics have been prepared from the seven annual averages within the review period:

- Mean difference
- Sample standard deviation of annual mean difference.

The significance of these stations has then been assessed

The P-value has been established by testing the probability of a null hypothesis, which represents a scenario where the compared datasets share a common mean.

A lower P-value represents a lower probability that the two datasets share a common mean. In this analysis, the conventional metric of P < .05 has been adopted as being indicative that an observed difference in sample means is statistically significant. P-values have been estimated using a Student's *t* distribution with n-1 degrees of freedom.

Table A2.1 presents the annual average PM_{10} concentration by region / station group, while Table A2.2 presents the differences between UHAQMN (LP/SC) and each respective region/station group.

Basian / Crown	Year							
Region / Group	2013	2014	2015	2016	2017	2018	2019	
Lower Hunter & Central Coast	20.2	18.2	21.7	22.0	22.9	25.2	29.1	
Lower Hunter & Central Coast (exc. Stockton)	20.2	18.2	19.4	19.8	20.7	23.0	26.7	
Lower Hunter (exc. Stockton)	22.1	19.2	20.3	20.7	21.6	23.9	27.8	
Sydney Regions	17.2	16.6	15.6	16.6	17.1	19.8	23.9	
Illawarra	16.9	17.1	16.2	17.4	18.0	20.1	22.5	
North West Slopes	16.6	15.8	14.1	15.3	15.3	20.1	33.7	
Central Tablelands	15.1	14.6	13.4	13.3	14.1	18.8	27.4	
South West Slopes	19.0	18.3	17.3	17.9	18.2	23.6	29.4	
Remainder of NSW Regions	17.4	16.7	16.2	17.0	17.5	20.9	26.7	
UHAQMN (LP/SC)	21.2	20.1	17.8	18.3	20.4	25.0	32.4	
UHAQMN Background	17.6	16.8	15.1	15.8	16.8	21.1	29.3	
UHAQMN Diagnostic	23.2	21.1	19.1	20.4	22.2	27.0	34.9	

Table A2.1 Annual average PM_{10} concentration by region / station group ($\mu g/m^3)$

Pagion / Crown	Year							
Region / Group	2013	2014	2015	2016	2017	2018	2019	
Lower Hunter & Central Coast	1.0	1.9	-4.0	-3.6	-2.6	-0.2	3.3	
Lower Hunter & Central Coast (exc. Stockton)	1.0	1.9	-1.6	-1.5	-0.3	2.0	5.7	
Lower Hunter (exc. Stockton)	-0.8	0.9	-2.5	-2.4	-1.2	1.0	4.6	
Sydney Regions	4.0	3.5	2.2	1.7	3.2	5.2	8.4	
Illawarra	4.3	3.0	1.5	0.9	2.4	4.9	9.8	
North West Slopes	4.6	4.3	3.7	3.0	5.1	4.9	-1.3	
Central Tablelands	6.1	5.5	4.4	5.0	6.3	6.2	5.0	
South West Slopes	2.3	1.8	0.5	0.5	2.2	1.4	3.0	
Remainder of NSW Regions	3.8	3.4	1.6	1.4	2.9	4.1	5.6	
UHAQMN (LP/SC)				-				
UHAQMN Background	3.7	3.4	2.7	2.6	3.6	3.9	3.1	
UHAQMN Diagnostic	-1.9	-1.0	-1.4	-2.1	-1.8	-2.0	-2.5	

Table A2.2: Annual average PM₁₀ concentration difference - UHAQMN (LP/SC) vs region / station group (µg/m³)

Table A2.3 presents an analysis of the mean differences with corresponding P-values and findings of statistical significance.

Table A2.3: Analysis of PM₁₀ concentration difference - UHAQMN (LP/SC) vs region / station group

Region / Group	Mean Difference (µg/m³)	Sample Standard Deviation (µg/m³)	P-value	Statistical Significance of Mean Difference	
Lower Hunter & Central Coast	-0.6	2.8	.59	Non-significant	
Lower Hunter & Central Coast (exc. Stockton)	1.0	2.5	.32		
Lower Hunter (exc. Stockton)	-0.1	2.5	.94		
Sydney Regions	4.0	2.2	.003		
Illawarra	3.8	3.0	.01		
North West Slopes	3.5	2.2	.01	Significant	
Central Tablelands	5.5	0.7	< .001	(p < .05)	
South West Slopes	1.7	0.9	.003		
Remainder of NSW Regions	3.2	1.5	.001		
UHAQMN (LP/SC)			-		
UHAQMN Background	3.3	0.5	< .001	Significant	
UHAQMN Diagnostic	-1.8	0.5	< .001	(p < .05)	

As shown in these data:

- The observed mean difference between the UHAQMN (LP/SC) and the Lower Hunter region is small relative to other regions, and statistically non-significant within the observed data.
- The observed mean difference between the UHAQMN (LP/SC) and other regions / station groups is statistically significant within the observed data.

ERM has over 160 offices across the following countries and territories worldwide

Argentina Australia Belgium Brazil Canada Chile China Colombia France Germany Ghana Guyana Hong Kong India Indonesia Ireland Italy Japan Kazakhstan Kenya Malaysia Mexico Mozambique Myanmar

The Netherlands New Zealand Norway Panama Peru Poland Portugal Puerto Rico Romania Russia Senegal Singapore South Africa South Korea Spain Sweden Switzerland Taiwan Tanzania Thailand UAE UK US Vietnam

ERM Sydney

Level 15, 309 Kent St Sydney NSW 2000 Australia

T: + 61 2 8584 8888 F: + 61 2 9299 7502

www.erm.com

